
 

FDT FOR Ω-MONOIDS 

Jollanda Shara 

Department of Mathematics&Computer Science, University “Eqrem Cabej”, 6001, 

Gjirokaster, Albania. 

Email: jokrisha@yahoo.com 

Abstract 

In this paper we generalize the results of C.Squier ([1]) in the case of  -monoids. We give, first, 

the definition of  -semigroups and some general results related to the  -string rewriting 

systems, the properties of confluence, termination, Church-Rosser, and so on. Finally, we prove 

our main theorem which states that if    is a finitely presented  -monoid which has a 

presentation       involving a finite convergent  -string rewriting system  , then   has finite 

derivation type.       
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1. Introduction. 

In the recent years string-rewriting systems have been the central theme of numerous 

important papers in theoretical computer science and mathematics in general. Now, it is a well 

known the fact that if a monoid can be presented by a finite and complete ( that is, noetherian 

and confluent) string-rewriting system, then the word problem for this monoid is solvable. 

Unfortunately, the property of having a finite and complete string-rewriting system is not 

invariant from the given presentation. But, for finitely presented monoids, there exists another 

finiteness condition which is introduced by Squier (see [1]) and is called finite derivation type 

(or FDT, for short). It is obtained by considering certain binary relations, called homotopy 

relations, on the set of paths of the derivation graph (the so called Squier’s complex) that is 

associated with a finite presentation       of the monoid   considered. A monoid has FDT if 

the full homotopy relation is generated by a finite set called a homotopy base. Squier proved 

that this property is indeed a property of finitely presented monoids, that is, it is an intrinsic 
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property of a monoid independent of its presentation. He established the fact that every 

monoid that can be presented through a finite convergent presentation does have FDT. Thus, 

FDT is one of the necessary conditions that a finitely presented monoid must satisfy in order 

that it can be presented by some finite convergent string-rewriting system.  

In this paper we generalize these results in the case of  -monoids. We define, first, the  -

semigroups as a universal algebra which is a semigroup and in which there is given a system of 

binary operations    satisfying the associative condition: 

                        

for all         and for each pair of binary operations    . 

In the first sections of the paper we define and give some general results related to the  -string 

rewriting systems, the properties of confluence, Noetherian, Church-Rosser, critical peaks, the 

word problem for the  -monoids and so on. The last two sections are dedicated to the property 

of finite derivation type (FDT) and the related results of Squier ([1]) generalized in the case of 

 -monoids. We prove here our main theorem which states that if    is a finitely presented  -

monoid which has a presentation       involving a finite convergent  -string rewriting system 

 , then   has finite derivation type.      

2. Preliminaries. 

A binary relation on   is a subset      . If        , then we denote this by     and we 

say that   is related to   by  . The inverse relation of   is the binary relation         

defined by              . The relation                is called the identity relation. 

The relation      is called the complete relation. 

Let       and       two binary relations. The composition of   and   is a binary 

relation         defined by            such that     and    . 

A binary relation   on a set   is said to be 

1. Reflexive if     for all    ; 
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2. Symmetric if     implies    ; 

3. Transitive if     and     imply    ; 

4. Antisymmetric if     and     imply    . 

Let   be a relation on a set  . The reflexive closure of   is the smallest reflexive relation    on 

  that contains    that is, 

1.      

2. If    is a reflexive relation on   and     , then      . 

The symmetric closure of   is the smallest symmetric relation    on   that contains  ; that is 

1.      

2. If     is a symmetric relation on   and      then      . 

The transitive closure of   is the smallest transitive relation    on   that contains  ; that is 

1.      

2. If     is a transitive relation on   and      then      . 

Let   be a relation on a set  . Then 

1.         

2.          

3.    ⋃       
   . 

Let   be an alphabet. A semi-Thue system   over  , for briefly STS, is a finite set        , 

whose elements are called rules. A rule       will also be written as    . The set        of 

all left-hand sides and        of all right-hand sides are defined as follows: 

                            and 

                           . 

If   is finite, then the size of   is denoted by       and is defined as 
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|   |  ∑          

       

  

We define the binary relation    as follows, where       : 

     if there exist        and         with       and      . We write    
   if 

there are words               such that                            . 

If    , we have    , and if    , then we have     . 

Note that    
  is the reflexive transitive closure of   . The Thue congruence   

  is the 

equivalence relation generated by   . If   is a relation on    and    denotes the congruence 

generated by   then the relations   
  and    coincide. 

A decision problem is a restricted type of an algorithmic problem where for each input there 

are only two possible outputs. In other words, a decision problem is a function that associates 

with each input instance of the problem a truth value true or false. 

Definition 2.2. A graph   is a 5-tuple            -1  , where   is the set of vertices and   is 

the set of edges of  ;         are mappings, which associate with each edge     its initial 

vertex      and its terminal vertex     , respectively.;and  -1     is a mapping satisfying the 

following conditions:                             and             for all    . 

Definition 2.3. Let            -1  be a graph, and let    . A path in   (of length  ) is a 

      -tuple                           with              and              such 

that            and          hold for all            In this situation   is a path from    

to   , and the mappings      can be extended to paths by setting         and        . 

For      ,        denotes the set of paths in   from   to  . In particular, for each    ,  

       contains the empty path ( ). 

Also the mapping  -1 can be extended to paths. The inverse path              of   is the 

following path           
               

      . Finally, if          and         , 

then the composite path            is defined in the obvious way. 
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It is clear that, the composition of paths is an associative operation, and the empty paths act as 

identities for composition. Next, if         , then          , and if          then 

               . Finally, if   is an empty path, then      . 

If   is a graph, then      will denote the set of all paths in  , and                    

                                      is the set of all pairs of paths that have a 

common initial vertex and a common terminal vertex. 

Definition 2.4. Let                 
-1  and                  

-1  be graphs. A mapping from 

   to    is an ordered pair           of functions, where          and for each     , 

      is a path in    from           to          . Further, for each     ,     
    

       
   . The mapping   is called a morphism if    carries edges to edges. 

It is clear that a mapping         induces a mapping              . 

Definition 2.5. Let             -1  be a graph. A subgraph                 
-1  of   consists 

of a subset    of   and a subset    of   such that, for all      ,               and 

             . Next,        for all     . 

Definition 2.6.([6]) A type of universal algebras is an ordered pair of a set   and a mapping 

     that assigns to each     a nonnegative integer   , the formal arity of  . A 

universal algebra, or just algebra of type   is an ordered pair of a set   and a mapping, the type 

–   algebra structure on  , that assigns to each     an operation    on   of arity   .  

3. Presentations of  -monoids. 

A semigroup with multiple operators or a  -semigroup is a universal algebra which is a 

semigroup and in which there is given a system of binary operations    satisfying the 

associative condition: 

                        

for all         and for each pair of binary operations    . 

Let             be two  -semigroups. Then,       is a homomorphism if  
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 (      )  (         )             

Next, we define the free  -semigroup using the concept of the free word algebra of a type   

with the set   as basis, as it is described in [ 6 ]. For the case of  -semigroups, we agree, first, 

that their type is simply a set of binary relations which we denote by  . So, we construct, 

inductively, the free  -word algebras as follows: denote     , then for     denote    the 

set of all sequences           where            and    . For each    , we denote by 

   the empty word related to  .  Now, we take    ⋃      . Writing this in letters, we will 

have that    is the set of all sequences         where     and      . It is more 

convenient to denote these sequences in the form    . The product      is defined to be  , 

and similarly the product of the form      is defined to be  , where       are the empty 

words related to the operators    , respectively. In the next step,    would have as elements 

the sequences           where          and    . If           and          , 

then           would be just the sequence               , with our new notations. And this 

procedure continues …        

Examples: 

1. A semigroup is a set with a single binary operation . Here   consists of a single element 

  of arity two such that the following associative law is satisfied             for all 

       . 

2. A  -semigroup is a special case of an  -semigroup. Indeed, we define in   binary 

operators  ̅       such that  ̅              . Then,     ̅  is a  -algebra 

where  ̅    ̅      satisfying the conditions  ̅  ̅          ̅ (   ̅     )         

   ̅  ̅   ̅. 

3. It is clear that the free   -semigroup defined as above is a  -semigroup.  

We will denote with      the free  -monoid on  , that is the set of finite products 

                with                           , including the empty product  . 

It is the smallest  -submonoid of   containing  .      
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If        , we say that   generates  , or that   is a set of generators for  . If   is finite 

and generates  , we say that   is a finitely generated  -monoid. If   generates   and no 

strict subset of   does, we say that   is a minimal set of generators for  .   

Proposition 3.1. If   is a finitely generated  -monoid and   is a set of generators for  , then 

there is a finite subset of   which generates  . In particular, any minimal set of generators for 

  is finite.  

Proof:Indeed, for any                     with              , we get a finite set 

                . If             generates  , so does the finite set            

         .   

Now, if   is a  -monoid, then any map       extends to a unique morphism  ̅       

 .   

A presentation ( by generators and relations) is a pair       where   is an alphabet and   is 

the following set                  .  The congruence generated by   is defined as 

follows:   

i.                whenever               , and        

ii.    
   whenever                  . 

We denote by     the quotient           
  which is a  -semigroup.   

Indeed, it easily verified that the congruence generated by  , as we defined it, is a  -

congruence.  For this, it’s enough to see that  

                                   and                 

                   . Let us denote shortly by   this congruence. Now, for           

and    , let                 . This is well-defined, since for all          and     ,     

       and                                                    

                               

Let            and      . Then, it follows that  
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           (      )    (       )  (       )                       

and this result completes the proof. 

We have a canonical surjection                
  as well. Moreover, if       is a  

map such that           whenever     and  ̅         its extension  we obtain a 

unique morphism  ̃        
     such that  ̃      .̅ If the map  ̃ is bijective, we write 

         
  and we say that       is a presentation of the  -monoid  . This means that 

the set      generates  , and that   ̅     ̅   if and only if    
  . If the map  ̃ is bijective 

and  both   and   are finite we say that   is a finitely presented  -monoid. And again, if the 

map  ̃ is bijective,      is a minimal set of generators and no strict subset of   generates the 

congruence   
 , then we say that       is a minimal presentation of  .     

Lemma 3.2. For any morphism         
          

  , there is a morphism        

     such that          .   

Proof: 

 

          
 
            

                                                                                               

                                                                 
   

 
            

    

It is sufficient to define      for each    , and for this we have to use  the fact that    is 

surjective. 

4. Rewrite rules and reductions.  

If       is a presentation of a  -monoid , each           can be seen as a rewrite rule 

 
 
  , with source   and target  . An elementary reduction is of the form      

   
→         

where     are words and  
 
   is a rule (as we define it) . A reduction is a finite sequence  
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of elementary reductions. Each rule is considered as an elementary reduction, and any 

elementary reduction is considered as a reduction of length  . If   
 
   and  

 
   are 

reductions, we write     for the composed reduction  
 
  

 
  . Furthermore, there is an 

empty reduction  
 
   for any word        . So we obtain a category of reductions 

      . We call   a  -string rewriting system.   

5. Termination and confluence. 

The reduction relation generated by   is the smallest order relation containing   which is 

compatible with the product: 

     
 
       whenever           and     in the sense of definition we give for  ; 

   
   whenever                  .  

In other words    
   whenever there is a reduction  

 
   and      whenever there is an 

elementary one. 

We say that a word   is reducible if there is some word   such that     . Otherwise we say 

that   is reduced (irreducible). We denote by        the set of irreducible words mod . We 

say that a property is  -hereditary if, whenever it holds for each   such that      then it also 

holds for  . In particular, such a property holds for all reduced words. 

Proposition 5.1. For any presentation       the following properties are equivalent: 

i. There is no infinite reduction                  (termination); 

ii. Any  -hereditary property holds for all words (noetherian induction property). 

Proof: If   does not satisfy  some  -hereditary property, then we can build an infinite reduction 

starting from  . Indeed, if      does not hold for some     then by our supposition there will 

be some      such that       and       is false. Continuing this argument we obtain an 
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infinite sequence             . But this is a contradiction to our assumption that the 

termination property holds. Conversely, termination can be proved by noetherian induction. 

In that case, we say that that the presentation is noetherian. This implies that the source of a 

rule can never be empty. Moreover, for any word  , there is a reduced word    such that 

   
   . 

In order to prove that a presentation       is noetherian, it suffices to define a termination 

ordering for it, that is a strict well-founded ordering   which contains   and which is 

compatible with the product. For instance,   may be defined by             (length-

lexicographical order).  We give below the definitions of three other properties, as well: 

Church-Rosser property: 

If     
  , there is   such that    

   and    
   . 

Confluence: 

If      
   and    

  , there is   such that    
   and    

  . 

Local confluence: 

If       and     , there is   such that     
   and    

  . 

A  noetherian presentation which satisfies one of the above properties is called convergent 

(complete). 

6. Critical peaks. 

As a first step, we define the derivations for the presentation as follows: 

1) An atomic derivation  
 
   is given by a pair          

2) An elementary derivation  
 
   is given by two words          and an atomic 

derivation  
 
   such that         and         . If      , we identify   

with the atomic derivation  ,  
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3) A derivation  
 
   is given by a sequence     

  
   

  
  

  
→      of elementary 

derivations. If    , we identify   with the elementary derivation   . If    , we get 

the identity derivation. 

Composition of derivations is defined in obvious way. Also, if     are words and  
 
    is a 

derivation, the derivation      
   
→         is defined in the obvious way. 

Let       be a  -monoid presentation such that the  -string-rewriting system   is noetherian. 

This means that there is no infinite sequence    

  
   

  
  

  
→   

    
→    of elementary 

derivations. Then for any       , there is a derivation  
 
   where   is reduced which means 

that no elementary derivation starts from  . This   is called a normal form of  .  

A peak is an unordered pair of elementary derivations  
 
   and   

  

    starting from the same 

word  . Such a peak is called confluent if there is a word   and two derivations  
 
   and 

  
  

  . 

It is called critical if      and if it is of the form 

 

                 

                                                                     ↙                       ↘      

                                                                                                         

 

               

                                                                  ↙                       ↘    

                                                                                                       

 

where, in the first case,    is a strict prefix of  , or equivalently,   is a strict suffix of   .   
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Remarks 6.1.: 

 If          is a confluent peak then         is again a confluent peak. Thus we can 

identify   with  . 

 If   is a word and         is a confluent peak then               and     

         ,     are also confluent peaks. 

 If   
 
   and  

 
   are elementary reductions then           is a confluent peak. In 

the latter case, we say that the elementary reductions (elementary derivations)    and 

   are disjoint. 

So, a peak is critical if it is not of the form     or     with    , and if its reductions are 

neither equal nor disjoint.  

A pair of positive edges with the same initial vertex form a critical peak if either: 

i. One of the pair is both left- and right-reduced ( a critical peak of inclusion type) i.e. it 

has the form    
    

    where                       .  

ii. One of the pair is left-reduced but not right-reduced, the other is right-reduced  but not 

left-reduced, and they are not disjoint ( a critical peak of overlapping type), i.e. it has the 

form       where                 . In this case,     and     are the first 

coordinates of two pairs from  .    

A critical peak of a  - string rewriting system   is a pair of overlapping rules if  

1) (                                       ; and a pair of inclusion type if 

2)                                     .  

Also a critical peak is resolved in   if there is a word   such that     
 
   and    

 
   in the 

first case or   
 
   and     

 
  . 

The following theorem is a generalization of  Theorem 2.1.,[2].  

Theorem 6.2. If the presentation       of a  -monoid is noetherian, then the following 

properties are equivalent: 
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i.   is Church-Rosser; 

ii. If (                                    with    , then there exists 

       such that    
 
   and    

 
  . If                           

            then there exists        such that   
 
   and        

 
  ; 

iii. For each        there exists a unique irreducible        such that  
 
   .  

Proof: From i. follows immediately ii. since     
 
    . ii. implies iii.   

If   is reduced, then   itself is the unique reduced form of  . In general, suppose that 

    

 
    where       are irreducible. The relation applications involved in            

are either identical or disjoint or ii. applies. In any case, there exists        such that   

 
   

and    

 
  . Choose an irreducible        such that  

 
  . Thus   

 
   for each      . 

Applying the inductive hypothesis twice, each      which implies      , as required.  

It is obvious that iii. implies i. Note first that if iii. holds and    , then   and   have the same 

irreducible; i. follows immediately if we apply induction on the length of a relation chain which 

connects   and   in the definition of the Church-Rosser property. 

Proposition 6.3. If all the critical peaks of a presentation are confluent then all the peaks are 

confluent. 

Proof: It follows directly from the above remarks. 

Corollary 6.3.1. If a presentation is noetherian and all its critical peaks are confluent , then it is 

convergent. 

A noetherian presentation is called complete or canonical if all critical peaks are confluent. The 

above proposition, implies the confluence of all peaks and the uniqueness of normal forms. 

Thus, if this presentation is finite, the word problem is decidable.  
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7. Decision problems. 

If       is a convergent presentation, we denote by  ̂ the reduced form of  , that is the unique 

   such that    
    . By Church-Rosser, we have    

   if and only if  ̂   ̂. 

Consider the following decision problem: 

INSTANCE: Two words         ; 

QUESTION: Does    
   hold? 

If this problem is decidable we say that the relation   
  is decidable.  

Proposition 7.1. If       is a finite convergent presentation  then   
  is a decidable relation. 

Proof: It would be enough to compare the reduced form which, in this case, are obviously 

computable. 

If    
  is a decidable relation then we say that that the  -monoid   has a decidable word  

problem and this property does not depend on the choice of the presentation as long as this 

presentation is finitely generated, i.e.   is finite. Indeed, assume that       and       are 

finitely generated presentations  of the  - monoid   such that        . Then for every 

    there exists a word         such that   and    represent the same element of  . If 

we define the homomorphism             by         then for all          we  

have    
   if and only if       

     . Thus the word problem for       can be reduced to 

the word problem for       and vice versa. Thus the decidability and complexity of the word 

problem does not depend on the chosen presentation. Hence, we may just speak of the word 

problem for the  -monoid  . 

Proposition 7.2. Convergence is a decidable property for any finite noetherian presentation. 

Proof: It follows from the facts that there are finitely many critical peaks in this case and is 

easily seen that they are computable. 
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8. Reduced presentations.  

We say that a convergent presentation       is reduced if each symbol     is reduced, and 

for each rule  
 
   the source   is only reducible by  , whereas the target   is reduced. So we 

can identify the rule   with its source  . Moreover, each critical peak   is an overlap and is 

determined by its source  . So we can identify again   with  . 

Proposition 8.1. For any convergent presentation, there is a reduced one with no more symbols 

and rules. 

Corollary 8.1.1. If   has a finite convergent presentation, then it has a finite reduced 

convergent presentation.( see [4]) 

9. Finite derivation type (FDT).   

In the following sections we generalize the results of [1]. 

Let us first give some background material about monoid presentations, associated graphs and 

the property of finite derivation type. So suppose that       is a  -monoid presentation as we 

defined it in the previous sections. The  -monoid defined by      , as we saw, is the quotient 

of       by the smallest congruence generated by  , where   is a  -string rewriting system. 

In fact, we have a graph                      -1)  associated with       as follows: 

a)        is the set of vertices, 

b)                                                  is the set of edges, 

c) the mappings         are defined through                      and 

                    ,      , 

d) the mapping -1     is defined through                              .  

If                 is an edge of    and          , then                         is 

an edge of     satifying                   and                  , and           

       ,           . Thus, the free  -monoid      induces a two-sided action on the 

graph   . In fact, this action can be extended to paths as follows: if              and 
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        , then                                    is a path from 

                  to                   , and                   where  

                     .  

Now, let       denote the set of all paths in   , and let  

                                              .  

Thus, with          we denote the set of all parallel paths in      . (Two paths   and   are  

called parallel, which is denoted as     , if           and          ).  

 A closed path satisfying             is called a circuit at   and by      we denote the set 

of all circuits at  . By convention,      always contains the trivial circuit    at  .  

An equivalence relation            is called a homotopy relation if it satisfies the following 

conditions: 

a) If       are edges of   , then (        )                               ; 

b) If     (         ), then             for all         ,      ; 

c) If                 satisfy                                   and 

     , then          ; 

d) If         , then              

It is seen that the collection of all homotopy relations on       is closed under arbitrary 

intersection, and so          itself is a homotopy relation. Thus, if                 then 

there is a unique smallest homotopy relation    on            that contains  . This 

homotopy relation will be called the homotopy relation generated by  .  

Definition 9.1. Let           . 

a)   is the following set of pairs: 

  

{                               
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                              )                               

                      

b)                                                      . 

  is called the set of disjoint derivations, while   is the set of inverse derivations. Notice that   

and   are subsets of         . 

Theorem 9.2. Let       be a  -monoid presentation, and let    denote the associated graph, 

let           , and let            be defined as follows: 

                                                                

                                                    

Then the homotopy relation    generated by   is the smallest equivalence relation on       

that contains the relation  .  

Proof: In the same way as in Theorem 3.4. in [1]. 

Definition 9.3. Let       be a  -monoid presentation, where   is a finite set of binary 

operations, and let    denote the associated graph. We say that        has finite derivation 

type (FDT)  if there is a finite subset            which generates           as a homotopy 

relation, i.e.,          is the only homotopy relation on       that contains the set  .   

Remark 9.3.1 Another definition for FDT: 

For a subset   of    (i.e. of         ) , the homotopy relation    generated by   is the smallest 

(with respect to inclusion) homotopy relation containing  . The homotopy relation generated 

by the empty set   is denoted by   . If   coincides with   , then   is called a homotopy base for 

  . The presentation       is said to have finite derivation type (FDT) if the derivation graph 

   of       admits a finite homotopy base where   is a finite set of binary operations. A 

finitely presented  -monoid   is said to have FDT if some  finite presentation for   has FDT.   

Definition 9.4. Let         and          be two  -monoid presentations, let   
  denotes the 

graph associated to        , and let      
      

   be a morphism. We call   a mapping of 
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 -monoid presentations if it satisfies the following condition: For all         , there is a path 

in   
  from      to     .  

In the situation of Definition 9.4., we will give some notational conventions. First, for each 

        , we will choose a path          
   from      to     . If                  

  , 

then we choose the corresponding edge of    
 . If          , then we choose the path        

of length  . Next, by      we will denote the path     
    from      to     .  

Let   
  denote the graph associated to        . Based on the morphism      

      
   and 

the choice of paths      we define a mapping     
    

  as follows:          , where  

      
      

   is simply the morphism  , and                                for all 

       
   and            ,      . Then                 is a path in   

  from 

                           (               ) to                          

  (               ). Thus   is a mapping from   
  to   

  in the sense of definition we gave 

above. We will say that the mapping     
    

  exhibits the mapping   from          to 

       . To simplify the notation we will write   to denote    as well as   .     

 Theorem 9.5. Let         and          be two  -monoid presentations with associated 

graphs   
  and   

 , respectively, let     
    

  be a mapping that exhibits a mapping   from 

        to         , let           
   and let          

   be a homotopy relation. If 

          holds for all         , then           for all       satisfying     
 .  

Proof: Let    denote the relation on     
   that is defined from    as in Theorem 9.2., and let 

   and    denote the corresponding sets of pairs of paths as they are defined there. Then,     
 

is the equivalence relation on     
   generated by   . Using the facts that    is an equivalence 

relation on        
  ,  and   exhibits a mapping   from         to        , it suffices to prove 

only that from                it follows that          . 

If          , then           by the hypotheses. If         , then there are 

                     
   such that 

  (                                                         ) and 
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  (                                                         ), where       

   
                                         ,               . 

 Since   exhibits a mapping   from         to        , we have: 

                                      (                           ) 

and 

                                                                    

Using the induction on the combined length of the paths               it is easily verified that  

          holds. If          , then there is an edge   of   
  with         such that 

              
      and      . But                

         
   for some path 

   in   
  satisfying            , and      (    ). From the definition of homotopy 

relation, it follows that      
          which means that           and this completes 

the proof of the the theorem.  

Corollary 9.5.1. Let         ,        ,   
  ,   

 ,     
    

  and           
   be as in the 

statement of Theorem 9.5., and    {(         )|      }. Then, for all         
  , 

    
  implies that        

    .  

The  -monoid   presented by        has infinitely many different finite presentations. We will 

show that every other finite presentation of the  -monoid   has finite derivation type if  

      has FDT, i.e., the property of having finite derivation type does not depend on 

presentation and is an intrinsic property of the  -monoid presented. To show this we need the 

notion of  -Tietze  transformation. 

Definition 9.6. Let       be a  -monoid presentation. The following four types of 

transformations of        are called   - elementary Tietze  transformations: 

I. If          such that    
  , then the presentation             is obtained 

from       by adding a defining relation, 
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II. If        such that      

  , where           , then the presentation        is 

obtained by       by deleting a defining relation.  

III. If         and     is a new symbol, then the presentations                 

 and                  are obtained from       by adding a generator.    

IV. If    , and              such that         or        ,  then the 

presentation            is obtained by       by deleting a generator. Here, 

   {(           )|                      } where                     

is the morphism defined through         if          and          if    .   

It is easily verified that the  -monoids    
 and     

 are isomorphic whenever         and   

        are two  -monoid presentations such that         can be transformed into         

through a finite sequence of  - elementary Tietze transformations. The following  is the main 

result on  - Tietze transformations. 

Proposition 9.7. Let         and          be two finite presentations of the same   -monoid. 

Then there exists a finite sequence of  - elementary Tietze transformations that transforms the 

presentation         into the presentation        . 

For each   -elementary Tietze transformation, we will prove a corresponding technical lemma 

which in essence expresses the fact that if         is a finite presentation that has finite 

derivation type, and if          is obtained from         by that type of   -elementary Tietze 

transformation, then         has finite derivation type as well. From these lemmata and the 

Proposition 9.7., we get our first main result. 

Theorem 9.8. Let         and          be two finite presentations of the same   -monoid. 

Then the presentation          has finite derivation type if and only if the presentation 

        has finite derivation type. 

Thus, as we mentioned above, having the finite derivation type is an invariant property of 

finitely presented  -monoids. 
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Lemma 9.9. Let       be a finite  -monoid presentation, let          be such that 

   
  , and let                   . If       has finite derivation type, then so does 

      . 

Proof: First, we assume that     and        , since for us a string- rewriting system is 

always irreflexive and anti-symmetric. Let    denote the graph         associated with  

     , and let   
  denote the graph          associated with       . If       has finite 

derivation type, there exist a finite set            such that            . We will define a 

finite set           
   such that    

        
  . It can be easily seen that   

  is obtained 

from    by adding certain edges. We define a mapping from   
  to    as follows. Since  

   
  , there is a path      from   to   in   . On the subgraph      

  ,  we define   to be 

the identity. On the additional edges   is defined as follows:  (             )           

and  (             )        
     for all         . Then     

     is a mapping of 

graphs. Define now the set           
   as  

    ((             )     )  ((             )     
  )   . Then    is a finite set of pairs  

of paths in   
 . 

Claim: For all              
  , if           , then     

 . 

Proof: Using the pairs in      and the induction on the number of edges from   
     that 

occur in    it can be easily verified that     
     for all paths       

  .  

Let              
  . Then                     , and hence, if           , then, since 

    , this yields     
       

       
 . 

Since            , we have            for all              
  . So,           

  , 

which means that        has finite derivation type. This completes the proof of Lemma 9.9.                      

Lemma 9.10. Let        be a finite  -monoid presentation, and let          be such that 

   
  , where             . If        has finite derivation type, then so does      . 
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Proof: Let           , and let   
          . Then    is obtained from   

  by deleting all 

edges of the form               and              ,         . Thus,    is a subgraph of 

  
 . Since,    

  , we can choose a path      from   to   in   . We will define , now, a 

mapping of graphs     
     in the same way as in the proof of Lemma 9.9. Let    

       
   be such that    

        
   and let   {(         )|        }. Thus, if    is 

finite, then   is a finite subset of          .  

Claim: For all               ,     . 

Proof: Let               . Then              
  , and hence,     

 . Then, by Corollary 

9.5.1. it follows that           . But, since               , we have        and 

      , i.e.,     .                     

Lemma 9.11.  Let       be a finite  -monoid presentation, let       , and let     be a 

new letter. If        has finite derivation type, then so does                        .  

Proof: Let            be the graph associated with      , and let            be a finite 

set such that            . Next, let   
            be the graph associated with        . 

We see that    is a subgraph of   
  and define a morphism      

        by        if 

    and        if    . Then   is a mapping of  -monoid presentations, according to the 

corresponding definition. For each        , we choose the path                 of length   

from   to  , and for         , we choose the path     of length   at  . In this way we obtain 

a mapping     
     that exhibits the above mapping of  -monoid presentations as 

described after definition we mentioned above. In fact,   maps   
  onto   , and taking its 

restriction to   ,   is the identity mapping.  

Finally, we take                      
  . By    

 we denote the homotopy relation on 

    
   that is generated by   . We claim that    

        
  . To prove this claim we will need 

to prove a sequence of intermediate claims.  

Let  ̃   denote the subgraph of   
  that has the same vertices as   

 , but that contains only 

those edges               of   
  for which             or            . By     ̃   we  

IOJPH - International open Journal of Mathematics and Statistics

Volume-1|Issue-2|November,2018 www.iojph.com 37



 

denote the sets of those paths in  ̃  that only contain edges of the form               where 

       
  , and by      ̃   we denote the set those paths in  ̃  that contain only edges of 

the form               where        
  . Let   denote an arbitrary homotopy relation on 

    
  . Then  

Claim 1. Let      
  . Then there is a path        ̃   from   to     , and any two such 

paths are homotopic mod  . 

Proof: If                                ,                          , 

     then  

                                              

                            

                                               

is a path from     ̃   and           . If        ̃   is another path from   to     , then 

   and    are different only in the order in which the occurrences of the letter   are replaced 

by the string  , and, in this case it is easily verified that       holds.  

Claim 2. Let      ̃  . Then there exist paths        ̃   and        ̃   such that 

          ,            ,            and        .    

Proof: Let             , where         are edges of  ̃ . If   itself has not the required 

form, then there is an index     such that                    and 

                        . If        , then the edges    and      are inverse to each other, 

and hence,                        . If         , then from the relation         

            it follows that these edges have as necessary consequence the disjoint 

applications of relations. In fact, if                and                then  
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So,                                . 

Repeating this procedure we get that   is transformed into a path of the required form. 

Claim 3. Let               be an edge of   
  such that            , let        ̃   be a 

path from       to          and let        ̃   be a path from          to      . Then  

                               (         (                 )         )    , 

where            . 

Proof: If         , then                and                and in this case, our 

problem is resolved and so we  have nothing to prove. Assume that     contains occurrences 

of the letter  . Thus we will have                            and 

                       . By Claim 1, there is a path        ̃   from       

                                                  to   

                                                          and  

                                                       to  

                                                         . 

Next, the path      
   is homotopic to the empty path (      , and so 

                                 
                . Here, we describe paths or parts 

of paths by displaying the edges used, for simplicity. Since the relations used in the path   
   

and the relation used on the edge               are disjoint, the repeatedly application of  the 

Definition of homotopy gives a path of the form                           from       to  

       where        ̃  . 

Claim 4. Let       
  . Then there exist paths      ( ̃ ),         and      ( ̃ )such 

that                   (    )       (    )       (    )        (    )  

          , and            

IOJPH - International open Journal of Mathematics and Statistics

Volume-1|Issue-2|November,2018 www.iojph.com 39



 

Proof: Let       
   be a path from   to  . By Claim 3 we can replace each edge of the form 

                         , by a path from       to         , then the edge 

                   , and next a path from          to      . Thus, we can assume that 

whenever               is an edge of   such that            , then         . We can 

now factor   presenting it in the form                   , where            

 ( ̃ ) and                 . If    , then          . By Claim 2,         for 

some paths      ( ̃ ) and      ( ̃ ). If            , then applying Claim 1 there is a 

path   
    ( ̃ ) such that   

  leads from       to  (     )      . Hence,        
  

   
             

    ( ̃ ) and    
          ( ̃ ) satisfying the required properties. So 

let    . But         , implies that                 . Thus,            and 

             . Applying Claim 2 we can replace    by a path      ( ̃ ) from      to 

       . In the same way, we can replace    by a path      ( ̃ ) from         to     . 

Finally, let              . Then     ( ̃ ) is a path from            to          

    . Since     ( ̃ ), we have     )        (     )   (     )          and so, by 

Claim 2,           . Hence,                                    . 

Choosing              we obtain the required result.    

Claim 5.    
        

  . 

Proof: Let              
  . Applying Claim 4 we get     

         and     
      

  , where         ( ̃ )         ( ̃ ) and             are such that       

 (    )        (    )        (    ) and              . Since          , we 

have        (    )   (    )       , and since          , we have       

 (    )   (    )       , which implies that                 . But we choose      

and so      
  . By Claim 1      

  , since                       and       

 (    )   (    )       . In the same way,      
  . Thus,     

            

        
 .  

We conclude that  if       has finite derivation type, then so does         and the proof of 

Lemma 9.11. is completed. We obtain the analogous result if                            
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Lemma 9.12. Let         be a finite  -monoid presentation, and let       be obtained from 

        by an  - elementary Tietze transformation of type IV. If         has finite derivation 

type, so does      . 

Proof: Let     , let         , and let        such that          and   

{(           )|              }, where        
        is defined as         if 

   ,         if    . Using  - Tietze transformations of type I and II the presentation 

        can be transformed into the presentation             . So, if         has finite 

derivation type then, by the above lemmata, this presentation has FDT, as well. Thus, we may 

assume, without loss of generality,  that for all                 , neither   nor   contains an 

occurrence of the letter  , i.e.,             . Let            and    
             

denote the graphs associated to       and        , respectively. Further, let           
   

be such that    
        

   . Proceeding as in the proof of Lemma 9.11. we obtain a  mapping 

     
     that exhibits the mapping    of  -monoid presentations. We now choose 

                                 . So, it is enough to prove the following  

Claim: For all               ,     . 

Proof: Let               . Then              
  , and hence      

 . By Corollary 9.5.1. 

this implies that           . But, since          , we have              , i.e., 

    .        

10. Finite presentation of   and FDT. 

Let   be an  -string rewriting system in  . Recall that with        we denote the set of all 

irreducible strings mod . An  -string rewriting system   is called normalized if          

      , and if, for each rule                           A convergent  -string 

rewriting system that is also normalized is called canonical. For each finite convergent  -string 

rewriting system  , it can be determined a finite canonical  -string rewriting system system    

such that   and    are equivalent in the sense that   and    are defined on the same alphabet 

and   
     

 . This result is proved in the same way as in [5].  
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An  -monoid presentation       containing a canonical  -system will be called a canonical  - 

presentation. 

Let         be a critical peak of edges. An orderd pair         of paths               is called 

a resolution of         if                         and             hold. 

For each critical pair of edges        , let         denote a fixed resolution. 

 Theorem 10.1. Let       be a  -canonical presentation, let    be the graph associated to 

     , and let      
        such that   is the set of pairs  of the form               where  

        is a critical peak of edges and         is the chosen resolution of        . 

Then             where    denote the homotopy relation on       that is generated by  . 

Observe that the set   is a subset of   
        since                    for all pairs 

               . Note, also, that   is a finite set if   is finite. 

So, we obtain immediately our main result: 

Theorem 10.2. Let   be a finitely presented  -monoid. If   has a presentation       involving 

a finite convergent  -string rewriting system  , then   has finite derivation type. 

Proof: Since   has a finite presentation       such that   is convergent, it also has a finite 

canonical presentation        . The notion of equivalence of string rewriting systems has to 

do, as we know, with the congruence on the free monoid generated by the alphabets of the 

two systems. The alphabets must be the same, and the systems are equivalent if and only if 

they generate the same congruence on the corresponding free monoid. It is easily seen that if 

       and        are two equivalent string rewriting systems, then the  -monoids    
 and 

   
are identical. So, they are isomorphic, as well. Now,   has a finite presentation       

where   is convergent. So, it has a finite canonical presentation        , as well. The set of 

critical peaks of    is finite. It follows, from this, that the set   corresponding to         is 

finite. Applying, now, the Theorem 10.1 and Theorem 9.8 we conclude that each finite 

presentation of   has finite derivation type. 
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It remains to prove the Theorem 10.1.  

First, we will prove the following  

Lemma 10.3. Let        and         , and let              satisfying         

      and              . Then       . 

Proof: Let us apply the Noetherian induction. If   is irreducible, then    . Since       

      , these two paths must be both the corresponding path of length  , and so      . If   

is not irreducible, then both    and    have length larger then  , since z  is irreducible. So, there 

are edges    and    and paths    and   , all from       , such that               . Let 

                    .  

Claim: There exist a word         and paths              such that       

                  and             . 

Proof: If      , then       and we can take    and    to be the corresponding paths of 

length  . If                              and                              then we 

choose    to be the path consisting of the single edge                            and    to be 

the path consisting of the single edge                           . Then from the definition of 

homotopy relation, it follows immediately that             . If, now, there are words 

         and a critical peak of edges         such that                  , then we 

choose         
           where    

    
   is the chosen resolution of        . But, the fact 

that       
       

    , implies that                     
            

  
                

                    
          . So, the result of the claim is 

true. 

The result of the Lemma 10.3. follows, now, immediately from the facts that   is canonical and 

by the induction hypotheses. 

Lemma 10.4. Let         be a path from    to   , let              and let       

       be such that          and               , and         
  . 
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Proof: Notice, first, that         and         imply     
   . Hence, since   is 

canonical, we have      . So, it remains to see if         
  . We use the induction on the 

length   of the path  . If    , then      , and        by Lemma 10.3., and from this it 

follows that      
           ( by the definition of homotopy). If    , then there exist  

      , a path         from    to   of length    , and an edge   of    from   to    

such that      . Let    be a path from        that leads from   to      . By the 

induction hypothesis we have         
  . If   is an edge from       , then         

       both lead from   to   . Thus, by Lemma 10.3.,         . This implies that 

     
         

               
           . If   is an edge from       , then 

                 both lead from    to   . By Lemma 10.3., it follows that           , 

and so,      
         

                  

Now, the result of Theorem 10.1. follows immediately.  

Proof of Theorem 10.1.: Indeed, let                and let         and        . Next, 

let              such that          and             ,      . Since   is canonical, we 

note that            , and that         
     , by Lemma 9.4. Hence,            .     
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